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Abstract 

Background:  A detailed understanding of antimicrobial resistance trends among all human-related environments is 
key to combat global health threats. In food science, however, the resistome is still little considered. Here, we studied 
the apple microbiome and resistome from different cultivars (Royal Gala and Braeburn) and sources (freshly harvested 
in South Africa and exported apples in Austrian supermarkets) by metagenomic approaches, genome reconstruction 
and isolate sequencing.

Results:  All fruits harbor an indigenous, versatile resistome composed of 132 antimicrobial resistance genes (ARGs) 
encoding for 19 different antibiotic classes. ARGs are partially of clinical relevance and plasmid-encoded; however, 
their abundance within the metagenomes is very low (≤ 0.03%). Post-harvest, after intercontinental transport, the 
apple microbiome and resistome was significantly changed independently of the cultivar. In comparison to fresh 
apples, the post-harvest microbiome is characterized by higher abundance of Enterobacteriales, and a more diversified 
pool of ARGs, especially associated with multidrug resistance, as well as quinolone, rifampicin, fosfomycin and ami-
noglycoside resistance. The association of ARGs with metagenome-assembled genomes (MAGs) suggests resistance 
interconnectivity within the microbiome. Bacterial isolates of the phyla Gammaproteobacteria, Alphaproteobacteria 
and Actinobacteria served as representatives actively possessing multidrug resistance and ARGs were confirmed by 
genome sequencing.

Conclusion:  Our results revealed intrinsic and potentially acquired antimicrobial resistance in apples and strengthen 
the argument that all plant microbiomes harbor diverse resistance features. Although the apple resistome appears 
comparatively inconspicuous, we identified storage and transport as potential risk parameters to distribute AMR glob-
ally and highlight the need for surveillance of resistance emergence along complex food chains.
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Background
The World Health Organization lists antimicrobial 
resistance (AMR) among the top 10 global threats to 
public health and biosecurity, calling for urgent and 
concerted actions across all sectors as part of the One 
Health approach [1]. Currently 700,000 people die from 

antibiotic-resistant bacteria in health care annually and 
predictions are that numbers will increase to 10 million 
by 2050 [2]. The development of microbial antibiotic 
resistance is based on either de-novo mutation or the 
acquisition of mobile genes from the versatile pool in the 
environment, which comprises both, naturally evolved 
antibiotic resistance genes (ARGs) as well as ARGs 
introduced by anthropogenic practices [3, 4]. Microbial 
communities are deeply embedded within their host; 
nevertheless, they represent open and interlinked ecosys-
tems that coevolve, communicate and cross-feed [5–8]. 
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Accordingly, human, animal, and environmental habitats 
are strongly interconnected, and the effects of applied 
antibiotics to any of these habitats can extend beyond the 
site of use [9].

Compared to other human-related environments, 
food microbiomes, including their resistance potential, 
are rarely investigated [10]. The microbiome of food is 
a decisive factor for food quality [11], shelf life [12] and 
fermentation process [13], and already highlighted as 
the “missing link” in food safety policies and standards 
[14]. While health-beneficial microorganisms associ-
ated with food have recently been determined to sup-
plement the gut microbiome [15], recent studies showed 
that raw eaten vegetables and fruits represent an impor-
tant human–environment interface and can serve as a 
gateway for environmental AMR to humans [16, 17]. In 
addition, AMR has been reported of being extraordinary 
diverse in native plant microbiomes [18, 19] but until 
now, fresh produce as vector for AMR is less discussed.

Apples are among the most consumed fresh fruits 
world-wide and serve as important source for health-
beneficial metabolites [20], but have also been linked to 
foodborne outbreaks where contaminations occurred 
along the processing line [21]. Pre- and postharvest prac-
tices affect the microbiome of apple fruits [22–26], while 
the apple genotype and the geographic location represent 
important drivers as well [27–29]. However, the apple 
resistome, nor any other fruit resistome, has been inves-
tigated so far and the selection and emergence of AMR 
during the postharvest period is still unknown. Consid-
ering the immense global apple market (129 million tons 
produced) and trade (9.8 million tons exported) [30], the 
postharvest period can be an important factor for both, 
shaping the microbiome and the resistome.

To study this objective, we analyzed the microbi-
ome and resistome of apple fruits by applying shotgun 
metagenomics, 16S rRNA sequencing, quantitative real-
time PCR (qPCR) and a cultivation approach including 
whole genome sequencing (WSG) of multidrug-resistant 
isolates (Additional file 1: Fig. S1). Apple fruits were stud-
ied from two different cultivars (‘Royal Gala’ and ‘Brae-
burn’) and sources: fresh from the tree and compared 
them to apples at the end of the intercontinental food 
system, i.e. a supermarket located about 9.000 km away 
(linear distance: Cape town, South Africa—Graz, Aus-
tria). Our hypotheses, comprise two different scenarios: 
(i) a significant impact of the cultivar, due to the strong 
filtering effects of the plant genotype on the microbiome 
[28, 31] and (ii) an impact of transport and storage due 
to changes in the environment and the metabolic stage of 
the fruit. In either scenario, the resistome is assumed to 
reflect the changes occurring in the microbiome struc-
ture (Fig. 1).

Materials and methods
Sampling procedure and experimental design
Two apple cultivars, Braeburn (BR) and Royal Gala 
(RG), were selected to investigate the microbiome and 
resistome of apple fruits and the effect of storage and 
transport on them. Apple samples were collected at har-
vest (unprocessed and freshly harvested from trees in 
two South African orchards; hereinafter referred to as 
“fresh”) and at the point of sale (stored and transported 
to Austrian supermarkets; referred to as “stored”). All 
investigated apples were cultivated in South African 
orchards under conventional and GlobalG.A.P certified 
conditions, following industry recommended spray pro-
grams. Fresh apples were collected from eight individ-
ual trees during harvest time in February 2019 in South 
African orchards (Braeburn: 33°11′16.1"S 19°15′45.0"E; 
Royal Gala: 33°11′23.5"S 19°15′12.1"E) and stored fruits 
were picked randomly from open-layered trays of the 
same origin in an Austrian supermarket (Graz), at least 
30 days after South African harvest time. This reflects the 
average transport time starting at the day of harvest and 
includes postharvest processing, transport via ships to 
Northern European harbors and further truck transport 
to Austrian supermarkets where it is sold as “in season” 
South African fruit. All apples were sampled using ster-
ile gloves and sterilized instruments, visually evaluated 
for consistency in size, shape, and flawlessness, and kept 
on ice until further processing. We used Illumina MiSeq 
16S rRNA amplicon sequences as representatives to 
estimate bacterial diversity, shotgun metagenomics and 
genome binning to determine the bacterial composition 
and AMR profiles, 16S-targeted qPCR for quantification, 
and a culturomics approach including resistance screen-
ing and WGS. The methodological design is outlined in 
Additional file 1: Fig. S1.

Bacterial DNA extraction for 16S RNA gene amplicon 
sequencing and library construction
From each sample category five whole apples were cut 
into smaller pieces and homogenized in a Stomacher 
laboratory blender (BagMixer, Interscience, Saint-
Nom-la-Bretèche, France) with 20  ml sterile NaCl 
(0.85%) solution for 3  min. For isolation of apple-
associated bacteria and further resistance screen-
ing (described below), 1  ml of the suspension was 
withdrawn. 4  ml of apple suspension was centrifuged 
(20  min, 16,000×g); FastDNA SPIN Kit for Soil (MP 
Biomedicals, Solon, OH, United States) and a Fast-
Prep Instrument (MP Biomedicals, Illkirch, France) for 
30  s at 5.0  m/s was used to extract bacterial genomic 
DNA from pellets. The primer pair 515f–806r [32] 
was used for 16S rRNA gene amplification in three 
technical replicates per sample. Peptide nucleic acid 
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(PNA) clamps were added to PCR mix to block ampli-
fication of plant plastid and mitochondrial 16S DNA 
[33]. PCR was performed in a total volume of 30  μl 
[5× Taq&Go (MP Biomedicals, Illkirch, France), 
1.5 μM PNA mix, 0.25 mM of each primer, PCR-grade 
water and 1  μl template DNA] applying the follow-
ing cycling conditions: 95  °C for 5  min, 30 cycles of 

96 °C for 1 min, 78 °C for 5 s, 54 °C for 1 min, 74 °C for 
60 s and a final elongation at 74 °C for 10 min. Pooled 
technical replicates were purified by Wizard SV Gel 
and PCR Clean-Up System (Promega, Madison, WI, 
United States) and DNA concentrations were meas-
ured with Nanodrop 2000 (Thermo Fisher Scientific, 
Wilmington, DE, United States). All samples were 

Fig. 1  Hypothesized scenarios on the apple fruit microbiome and resistome. In scenario I the apple cultivar (Braeburn versus Royal Gala) drives 
the microbiome and resistome of the apple fruit. Scenario II suggests an impact of the global apple trade, including storage and transport, on the 
fruit microbiome and resistome. The map shows the apple production and trade network in 2018. The node size corresponds to apple production 
according to the data retrieved from [30]. The edge width reflects the export/import quantity between countries according to BACI: International 
Trade Database at the Product-Level [82]. The network was constructed in Gephi version 0.9.2 [83] using geolayout
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combined in equimolar concentration and sequenced 
via Illumina MiSeq v2 (250  bp paired end) amplicon 
sequencing. The same DNA extracts served for qPCR 
(described below).

Microbial DNA extraction for shotgun metagenome 
sequencing
For total microbial DNA extraction, three whole apples 
from each sample category (BR fresh, RG fresh, BR 
stored, RG stored) were separately processed, followed 
by pooling DNA extracts of the three replicates in order 
to reach sufficient amounts of DNA for subsequent 
metagenomic shotgun sequencing. For specific enrich-
ment of the microbial cell fraction, a density gradient 
centrifugation, as previously described [34, 35], was 
applied. In short, one whole apple was cut in pieces 
and per 100  mg apple, 500  ml of bacterial cell extrac-
tion (BCE) buffer were added and subsequently homog-
enized with a blender. From this mixture, 100  µl were 
used for cultivation, as described below. The remaining 
mixture was filtered through a layer of sterile Mesoft® 
filters and the filtrate was divided into ten 50 ml tubes. 
The filtrates were centrifuged (5 min, 10 °C, 500×g) and 
the resulting supernatants were transferred to clean 
tubes. After an additional centrifugation step (20 min, 
10  °C, 5500×g), supernatants were discarded, and pel-
lets were resuspended in 50 ml BCE buffer. Suspensions 
were filtered again through layers of Mesoft® filters and 
centrifuged (10  min, 10  °C, 10,000×g); the resulting 
pellet was resuspended in 50 ml BCE buffer. Filtration 
and centrifugation steps were repeated twice. The final 
filtrates from ten tubes per apple were suspended in 
0.5 ml 50 mM Tris HCl (pH 7.5) and pooled. The result-
ing suspension was overlaid with 4  ml Histodenz™ 
(Merck, Vienna, Austria) solution (8  g Histodenz dis-
solved in 10 ml of 50 mM Tris HCl pH 7.5; utilized as 
alternative to Nycodenz®), and centrifuged (40  min, 
10  °C, 10,000×g). The bacterial cell fraction, visible 
as whitish band at the interface of upper and lower 
phase, was collected and DNA was extracted using 
FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, 
OH, United States) and a FastPrep Instrument (MP 
Biomedicals, Illkirch, France) for 30 s at 5.0 m s−1. The 
three replicates per sample category were combined 
into one tube, DNA concentrations were measured 
with Qubit™ 4 Fluorometer (Thermo Fisher Scientific, 
Wilmington, DE, United States) and the whole DNA 
extract was sent for metagenomic shotgun sequencing 
to Vienna BioCenter (Vienna, Austria) using NovaSeq 
6000 instrument. DNA was enzymatically fragmented 
using Westburg NGS DNA Library Prep Kit (Westburg, 
Leudsen, the Netherlands) before sequencing.

Quantitative Real‑Time PCR (qPCR)
Bacterial 16S rRNA gene copy numbers were quantified 
via qPCR using the primer pair 515f–927r (10 µM each; 
[36]). Standard curves for estimation of bacterial abun-
dance were generated using serial dilutions of plasmid 
DNA containing a full-length copy of B. subtilis Sd3-12 
16S rRNA gene. The reaction mixes contained 5 µl KAPA 
SYBR Green, 0.5 µl of each primer, 3 µl PCR-grade water 
and 1 µl template DNA (diluted 1:10 in PCR grade water). 
Fluorescence intensity was detected in a Rotor-Gene 
6000 real-time rotary analyzer (Corbett Research, Syd-
ney, Australia) applying the following cycling conditions: 
95 °C for 5 min, 40 cycles of 95 °C for 20 s, 54 °C for 30 s, 
72 °C for 30 s and a final melt curve of 72 to 96 °C. Three 
individual qPCR runs were conducted for each repli-
cate and intermittently occurring gene copy numbers 
detected in negative control samples were subtracted 
from the respective sample.

Cultivation‑dependent resistance screening of bacterial 
isolates
A 100  µl aliquot of each replicate resulting from tissue 
homogenization, (described above) was used to isolate 
cultivable bacteria from apple fruits. Serial dilutions of 
the suspensions were plated on different media including 
PDA, R2A, SNA (all from Roth, Germany) and MIS [37]. 
Plates were incubated at room temperature for four days 
and subcultured for purification. In total, 160 isolates 
were picked randomly and screened in triplicates against 
eight different antibiotics on Müller-Hinton agar plates. 
Applied concentrations of antibiotics refer to previous 
publications [17, 19, 38] which followed the guidelines 
by the Clinical Laboratory Standard Institute: ampicil-
lin: 100 µg  ml−1, chloramphenicol: 30 µg  ml−1, erythro-
mycin: 30  µg  ml−1, gentamycin: 50  µg  ml−1, penicillin 
G: 100  µg  ml−1, rifampicin: 200  µg  ml−1, tetracycline: 
200 µg  ml−1, vancomycin: 50 µg  ml−1. Plates were incu-
bated at room temperature for three days and isolates 
resistant against at least three different antibiotics, thus, 
considered as multiresistant, were differentiated by BOX-
PCR fingerprinting [39] and subsequent 16S rRNA gene 
Sanger sequencing (LGC Genomics, Berlin, Germany) 
and NCBI Blast alignment. This way, 12 unique isolates 
were identified and subjected to whole genome sequenc-
ing (WGS).

Genomic DNA extraction from bacterial isolates and whole 
genome sequencing
Genomic DNA was extracted from 12 isolates consid-
ered as multiresistant using the MasterPure DNA puri-
fication kit (Epicenter, WI, USA) and DNA quantity and 
quality was checked by spectrophotometry (Nanodrop 
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2000c, Thermo Fisher Scientific, MA, USA) fluorometry 
(Qubit 4, Thermo Fisher Scientific, MA, USA) and gel 
electrophoresis. Genomic DNA was sequenced to about 
200× coverage using Illumina Novaseq 6000 instrument 
(150  bp paired-end sequencing; GENEWIZ, Leipzig, 
Germany).

Bioinformatics and resistome analysis of the bacterial 
community of apple fruits
For 16S rRNA gene amplicon analysis, forward and 
reverse paired end reads were joined in QIIME 1.9.1., 
imported into QIIME 2 2019.7 and demultiplexed 
according to QIIME 2 tutorial. Reads were quality-fil-
tered, denoised, chimeric sequences were discarded, and 
amplicon sequence variants (ASVs) were identified using 
DADA2 algorithm. In total, 166,460 reads were recovered 
(7927 mean reads per sample), which were assigned to 
1,274 ASVs. Feature classification was performed using a 
Naïve-Bayes feature classifier trained on Silva132 release 
[40] and mitochondria and chloroplast reads were dis-
carded. ASV tables were rarefied to an even library size 
of 2174 prior to alpha and beta diversity calculations, 
which were assessed running the core diversity script in 
QIIME 2. Statistics are based on Kruskal–Wallis test for 
alpha diversity and Analysis of Similarity (ANOSIM) test 
for beta diversity.

Analyses of the shotgun metagenomic datasets started by 
removing Illumina adaptors, read truncation to a minimum 
length of 50 bp and a phred score of 20 in a sliding window 
of 4 bp using trimmomatic [41]. In order to reduce host-
derived sequences in the dataset, forwards and reverse 
reads were aligned against the reference genome of Malus 
domestica, available at NCBI database (GCF_002114115.1_
ASM211411v1_genomic), using Bowtie2 v2.4.1 [42] in 
very-fast-local alignment mode. After discarding aligned 
reads, the four metagenomes sequenced produced between 
15 and 21 million high quality reads. SAMtools [43] was 
used to convert Bowtie2 output files and Kaiju v1.7.2 
[44] was used for taxonomic classification of sequencing 
reads. Kaiju output was further used to estimate micro-
bial abundance and richenss, where the latter refers to the 
total number of differently assigned features. All resistome 
analyses described in the following were conducted focus-
ing on assembly-based data by using contigs and bins. For 
particular reference, results of read-based analysis of resist-
ance genes can be looked up in Additional file 1: Table 1. 
Assembly-based data were generated as follows: paired-
end reads were subjected to de novo assembly into contigs 
using MEGAHIT v1.2.9 [45]. Assembly results are listed 
in Additional file 1: Table 2. Only contigs with a minimum 
length of 500 nucleotides (between 400,000 and 600,000 
contigs per metagenome) were used for further resistome 
analyses. Reads were mapped back to assemblies using 

Bowtie2 v2.4.1 prior to resistance gene annotation with 
DIAMOND BLASTX (v0.9.29.130) against deepARG v2.0 
[46] database. A cutoff of 80% similarity to the reference 
genes and an e-value of 10–11 was set for antibiotic resist-
ance genes to be retained in the dataset. Resistance genes 
annotated to more than three drug classes were considered 
as multidrug resistant. To overcome false positive results 
due to sequencing depth, ARG counts were rarefied using 
a threshold of 15,851,105, based on the sample with low-
est number of reads after removal of host reads. PlasFlow 
[47] was used to check whether resistance genes, with at 
least 1000  bp length, are located on either chromosomes 
or plasmids and RAWGraphs [48] was used to visualize 
abundance and distribution of plasmid-encoded genes in 
apple resistomes. Networks of resistance genes were con-
ducted in Cytoscape v3.8.2 [49] and a dendrogram, based 
on Euclidean distance and average clustering method, was 
produced in R v4.0.2 with standard function to visualize 
hierarchical relationship between the resistomes of the four 
apple samples. CIRCOS Table Viewer v0.63–9 [50] was 
used for circular representation of ARG relative abundance 
within the apple samples. Contigs were further binned 
into draft genomes (metagenome-assembled genomes; 
MAGs) using MaxBin 2.0 [51] and binning quality was 
validated with CheckM [52]. Draft genomes with more 
than 70% completeness and less than 25% contamination 
were considered for downstream analysis and are listed in 
Additional file 1: Table 3. Contigs of each genome bin were 
re-annotated using AmphoraNet [53] and resistance gene 
annotation was conducted with deepARG database using 
the same parameters as described above for contigs-based 
analysis. Relative abundance of each MAG within the 
respective metagenome was calculated based on the pro-
portion of total bin copy length to the total length of host 
sequence-filtered reads and a phylogenetic tree was gener-
ated based on average nucleotide identity (ANI).

Whole genome bioinformatics and resistance gene 
annotation started by quality filtering using trimmomatic 
[41], with the thresholds described above.. Genomes were 
assembled to scaffolds using SPAdes v.3.15.0 [54] and 
assembly quality was evaluated with checkM (Additional 
file  1: Table  4). ANI was applied for taxonomic assign-
ment and construction of the phylogenetic tree. Resistance 
gene annotation of genomes was conducted as described 
above for the resistome analysis of shotgun metagenomics 
datasets.

Results
Bacterial composition, diversity, and abundance profiles 
of fresh and stored apples
We used 16S rRNA gene amplicon sequencing, shotgun 
metagenomics and qPCR analyses to determine differ-
ences in bacterial community composition, diversity, 
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and abundance of apple fruits. Fresh apples at harvest 
(Br fresh, RG fresh) differed significantly in their com-
munity profiles from apples after storage (BR stored, 
RG stored) (R value = 0.5, p = 0.01; Additional file 1: Fig. 
S2A), while no difference was observed when the samples 
were grouped by the apple cultivar. Bacterial alpha diver-
sity was higher in stored compared to fresh apples. The 
difference was insignificant for Shannon diversity (Addi-
tional file 1: Fig. S2B), but significant for species richness 
(p = 0.02). Correspondingly, using the number of differ-
ently assigned features from the metagenomic dataset 
as hallmark for microbial richness resulted in significant 
differences as well (BR stored: 29,130 features; RG stored: 
27,809; BR fresh: 25,643; RG fresh: 24,442). In contrast, 
qPCR measurement of total bacterial abundance revealed 
no difference between apple fruits, amounting between 
2.3 × 106 and 4.3 × 106 16S rRNA gene copy numbers per 
apple (Additional file 1: Fig. S2C).

Bacteria was the dominating component of the apple 
microbiomes, representing 85–87% of the total reads 
sequenced (Additional file  1: Fig. S3), with Proteobac-
teria covering 57–61% of assigned reads, followed by 
Actinobacteria (9–15%), Bacteroidetes (10–13%) and 
Firmicutes (8–13%). Gammaproteobacteria was the 
dominating class in all apples (31–47%), followed by 
Alphaproteobacteria (10–22%), Actinobacteria (9–14%), 
Bacteroidetes (10–13%), Bacilli (7–11%) and Betapro-
teobacteria (1–2%). The relative abundance of Gam-
maproteobacteria also determined the compositional 
differences between fresh and stored apples. While fresh 
apples were highly dominated by Pseudomonadales with 
the genus Pseudomonas as main representative (15–32% 
of all bacterial reads), stored apples showed highest val-
ues for Enterobacteriales which originated largely from 
the genera Rahnella and Pantoea (18–12%) (Fig. 2). Bac-
terial genera that were shared by all apples with a mini-
mum abundance of 1% in at least one of the samples are 
provided in Additional file 1: Table 5.

Antimicrobial resistance genes (ARGs) composition of fresh 
and stored apples
The resistome of fresh and stored apples was different in 
terms of total ARGs detected, their relative distribution 
within samples, the drug classes to which they encode 
resistance, and the underlying resistance mechanisms 
(Fig.  3). Regarding the latter, efflux pumps highly pre-
vailed (57% of all ARG hits), while target alteration, target 
protection, antibiotic inactivation and target replace-
ment, in ascending order, were detected in all samples as 
well (Fig. 3A). From all assembled contigs, 0.01% to 0.03% 
were annotated to 132 different ARGs, which code for 
resistance against 19 different antibiotic classes (Fig. 3B). 
All apple metagenomes shared 25 high abundant ARGs 

with a target spectrum of eight antibiotic classes, among 
which quinolone, polymyxin and mupirocin resistance 
prevailed, as well as multidrug resistance (presented 
via pie charts in Fig. 3, B and listed in Additional file 1: 
Table 6).

ARG diversity was significantly higher in stored/
transported apples compared to fresh fruits (p = 0.004; 
according to independent t-test). In addition, stored 
apples shared 17 ARGs, that were not present in fresh 
apples, hereinafter referred to as the ‘storage-specific 
resistome’ (framed red in Fig. 3B and listed in Additional 
file 1: Table 6). In contrast, fresh apples shared only two 
low abundant ARGs (one multidrug, one beta-lactam 
ARG). No cultivar-specific effect was observed for ARG 
composition, except for three low abundant ARGs shared 
by Braeburn samples and one ARG specific for Royal 
Gala apples. Correspondingly, ARG composition within 
‘stored’ and ‘fresh’ was more similar than within the culti-
vars Braeburn and Royal Gala (Fig. 3C).

Target drug specificity correlates with storage 
and transport
Efflux pumps conferring multidrug resistance highly 
dominated in all metagenomes. For the purpose of a 
more in-depth description of target drug-specific ARGs, 
multidrug-resistant ARGs were excluded from the 
analysis described in this paragraph. ARGs against qui-
nolones, polymyxin and mupirocin were abundant in all 
apples (Fig.  4). For stored/transported apples, increased 
counts for ARGs conferring resistance against qui-
nolone, rifampicin, fosfomycin and aminoglycoside were 
observed; resistance towards the latter two antibiotics 
were unique for stored apples. Furthermore, ARGs con-
ferring resistance against trimethoprim, tetracycline, fos-
midomycin, chloramphenicol and the combined group of 
macrolide-lincosamide-streptogramin antibiotics were 
only detected in either BR stored or RG stored, being 
absent in fresh apples. In fresh apples, abundances of 
ARGs acting on mupirocin and bacitracin prevailed. The 
observed differences were not statistically significant.

The apple resistome revealed by reconstructed genomes 
and plasmids
Assembled contigs were binned into 95 metagenome-
assembled genomes (MAGs), of which, 19 MAGs (rep-
resenting 43.1% of all assembled contigs) had sufficient 
quality (Additional file 1: Table 3) and were further ana-
lyzed in terms of ARG profiles, abundance and similar-
ity (Fig.  5A). High-quality genomes were assigned to 
Gammaproteobacteria (10 MAGs), Alphaproteobacte-
ria (7 MAGs, mainly Rhizobiales), Deltaproteobacteria 
(1 MAG) and Actinobacteria (1 MAG); the latter repre-
sents the only MAG of a Gram-positive bacterium. The 
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highest number of genomes was reassembled from BR 
fresh (9 MAGs), followed by RG fresh (4 MAGs) and 
BR stored and RG stored each represented by 3 MAGs. 
The relative abundance of MAGs within their respective 
metagenomes revealed to be particularly high. For exam-
ple, Pseudomonas with 17.9% abundance in RG fresh, 
Pseudomonas with 8.6% abundance in BR fresh, P. vagans 
in RG stored (6.3%) and Rahnella sp. Y9602 in BR stored 
(15%). Resistance gene annotation for MAGs resulted 

in 37 different ARGs, with 18 being target-specific to 10 
different drug classes and 19 ARGs conferring multid-
rug resistance. Overall, ARG diversity was significantly 
higher (p = 0.001) for Gammaproteobacteria MAGs (e.g. 
P. vagans with 17 different ARGs annotated) than for 
Alphaproteobacteria. No resistance profile was assigned 
to Myxococcales and M. testacaeum MAGs. Referring to 
literature, all ARGs annotated to a MAG in the present 
work have been previously discovered for representatives 

Fig. 2  Gammaproteobacterial community profile of apple samples. Multi-level krona plots depict relative abundances of bacterial genera 
from the class Gammaproteobacteria in fresh and stored apples from the cultivars Braeburn and Royal Gala. Please note that percentage values 
indicate proportion of the respective genus to the whole bacterial community. Bacterial taxonomy was annotated using Kaiju. The entire bacterial 
composition to order level of each metagenomic sample can be looked up in Additional file 1: Fig. S3



Page 8 of 15Wassermann et al. Environmental Microbiome           (2022) 17:10 

of the same bacterial group and all MAGs are, in general, 
represented by cultivable bacteria.

The fraction of horizontally transferable determi-
nants within the apple resistome was evaluated using the 
PlasFlow prediction model. From the total of 132 ARGs 
detected in the dataset, 23 ARGs were assigned to be on 

plasmids and 72 ARGs to be chromosomally encoded. The 
number of plasmid-encoded ARGs was similar for all apple 
metagenomes (BR fresh: 7 ARGs, RG fresh: 7, BR stored: 7, 
RG stored: 10), with seven being present in more than one 
apple metagenome, but none being shared by all apples. 
The comparison of ARGs on MAGs and plasmids from 

Fig. 3  ARG profiles of fresh and stored apple samples. Results are based on deepARG annotations of contigs for resistance genes, target drug 
classes and resistance mechanisms, including only ARGs with at least 80% similarity to reference ARGs and an e-value of 10–11. Data were generated 
from the rarefied tables. A Distribution of resistance mechanisms of annotated ARGs for each apple metagenome. Value on top of each stacked 
bar denotes for percentage of annotated ARGs to total contigs assigned. Color code for figure panel B and C is depicted in the legend on the 
upper right: Braeburn: blue; Royal Gala: yellow, both fresh from the tree (dark blue and dark yellow, respectively) and stored/transported (light 
blue and light yellow, respectively). B Network representation of core and specific ARGs in apple metagenomes. Nodes represent different ARGs 
detected and node labels point to the antibiotic target class, while unlabeled nodes indicate multidrug resistance of the respective ARG. Node 
size corresponds to absolute abundance of ARGs in the rarefied datasets as indicated in legend on the lower right. Pie charts of nodes shared by 
all samples, representing the ‘apple core resistome’, indicate fractions detected within each apple metagenome. ARGs that were shared by stored 
apples but absent in fresh apples are highlighted as the ‘storage-specific resistome’. C Dendrogram visualizes connection between different apple 
samples based on their ARG composition. Calculations were executed in R using Euclidean distance with average clustering method
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each apple sample separately, revealed potential resistance 
interconnectivity within the microbiome (Fig. 5B). In total, 
13 ARGs could have been transferred between genomes 
and plasmids; interestingly, between P. vagans and Brucel-
laceae MAGs and plasmids, four and three ARGs could 
have been transferred, respectively. However, higher inter-
connectivity within fresh apples, as appearing from this 
analysis, might be biased by the higher number of reassem-
bled genomes from fresh apples.

The apple resistome revealed by antibiotic susceptibility 
tests and WGS of isolates
From a total of 160 isolates from fresh and stored apple 
fruits, 36 grew in presence of at least three out of eight 

antibiotics, thus, in the following considered as mul-
tidrug resistant. BOX-PCR fingerprinting and Sanger 
sequencing resulted in an assignment to twelve different 
genotypes, dominated by the genera Pantoea and Micro-
bacterium (Fig.  6). Resistance profiles were observed 
against all drug classes tested. However, the observed 
results are not entirely consistent with the metagen-
omic resistome analysis. In culture collections, resist-
ances against the natural antibiotic vancomycin, followed 
by ampicillin and penicillin G highly dominated. WGS 
of isolates followed by ARG annotation confirmed 36 
out of 56 of the observed resistances on culture plates. 
However, the majority of the confirmed resistances can 
only be explained by multidrug resistant efflux pumps 

Fig. 4  Distribution of drug-specific ARGs in fresh and stored apples. Only ARGs with at least 80% similarity and an e-value of 10–11 to reference 
ARGs are included and ARGs conferring multidrug resistance via efflux pumps, were excluded as they represented 57% of all ARG hits. A Circular 
representation of drug classes based on target-specific resistance gene abundances (right part of the circle) detected in fresh and stored Braeburn 
and Royal Gala apples (left part of the circle); thickness of ribbons refers to abundance of specific ARGs in the rarefied dataset. Visualization was 
generated using default settings of Circos software. B More detailed classification of the data shown in A, where each drug class is visualized in a 
separate panel. Y-axis of each panel represents total abundance of target-specific ARGs (note the different scaling) within apple samples that are 
represented on x-axis (I: BR fresh, II: BR stored, III: RG fresh, IV: RG stored). Stacked bars depict ARGs associated to the same antibiotic class within 
each sample; color-code for ARGs is shown on the right of each panel. Black arrows point to antibiotic classes to which resistance gene abundance 
is either increased or decreased in both stored apples compared to their fresh equivalents
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and only few target-specific resistance genes were anno-
tated (RbpA for rifampicin resistance of Rhodococcus 
fascians, tet42 and vanRO for tetracycline and vanco-
mycine resistance of Microbacterium foliourum, respec-
tively, and BL2be_ctxm and BL1_cmy for beta-lactam 
resistance of Pantoea isolates). In total, 20 out of the 56 
resistance patterns observed on culture plates remained 
to be unconfirmed by WGS. Especially the profiles of 
one Agrobacterium tumefaciens (resistant against five 
antibiotics), two Microbacterium arborscens and two M. 
foliorum isolates (each resistant against four antibiotics) 
appear interesting since no resistance genes were anno-
tated to their genomes.

Discussion
Our study on the microbiome and resistome composi-
tion of Braeburn and Royal Gala apples, freshly har-
vested and after intercontinental fruit trade, provides first 

insights into the apple resistome available directly to the 
consumer. Each apple harbors an indigenous, versatile 
resistome consisting of 132 ARGs, which allows micro-
biome members to adopt to specific environmental con-
ditions. The postharvest period was identified as a driver 
of the microbiome as well as the resistome, but not the 
cultivar. The latter is unexpected since cultivar and plant 
genotype effects on the plant microbiota are well docu-
mented [55–59], even for apples [28, 60–62].

The main compositional difference between the apple 
microbiomes were detected for Pseudomonadales and 
Enterobacteriales, dominating fresh and stored apples, 
respectively. Both groups are widely distributed in nature 
and general representatives for the plant microbiome 
[63]. Thus, the high abundance of Enterobacteriales 
in stored apples might not originate from an external 
source, but rather from an increase in population size of 
species native to the apple microbiome. Enterobacteriales 

Fig. 5  Resistome profiles of reconstructed genomes and plasmids from fresh and stored apples samples. A MAGs with sufficient quality are 
clustered by ANI, values for percentage identity are included for highly similar MAGs, resolved to highest taxonomic levels. Relative abundance of 
MAGs within the respective metagenome was calculated and is indicated by percentage value on top of each bar. The left bar of each MAG depicts 
the relative proportion of drug classes to which resistance is conferred by the respective MAG and drug classes are capitalized and underlined in 
the legend. The right bar represents the ARGs conferring resistance towards the respective drug class. No antibiotic resistant profile was annotated 
to MAGs assigned to Myxococcales (reconstructed from BR stored metagenome) and M. testacaeum (BR fresh), as indicated by ‘na’ (not assigned). B 
Resistance networks of MAGs and plasmids. Edge-connected circles indicate potentially transferred resistance genes according to their presence 
in plasmids and MAGs of the same apple. Size of circles (plasmids: empty circles, MAGs: filled circles) correlate with their total abundance in the 
respective metagenomes, as shown in the legend on the lower right. Colors of the four groups are defined by apple samples: light blue: BR stored; 
light yellow: RG stored; dark blue: BR fresh; dark yellow: RG fresh
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in general, represent decomposers of plant tissues and 
constitute characteristic components of a senescent 
plant. For apple fruits, Enterobacteriales abundance has 
already been reported to increase along with storage time 
and postharvest treatments [24–26]; the latter might 
aggravate the general effect of fruit senescence.

The richness of the bacterial community was higher 
in stored/transported apples, which correlated to higher 
ARG diversity; especially associated with fosfomycin, 
aminoglycoside, trimethoprim, tetracycline, fosmidomy-
cin, chloramphenicol and macrolide-lincosamide-strep-
togramin resistance. Interestingly, most of these drug 
classes represent (semi-) synthetics that are widely used 
in clinical environments or livestock treatment including 
growth promotion [65]. In total, 17 different ARGs were 
specific for stored apples, but only two ARGs specific 
for fresh apples, although both cultivars were sampled 
on the same day, from the same farm, being subjected to 
the same in-field management. Compared to the most 
abundant ARGs which were detected in all apples, inde-
pendent of cultivar or freshness, abundance of these 
specific ARGs was, however, low. The ARGs shared by 
all apples were mainly annotated to multi-drug resistant 
efflux pumps which are known to confer general resist-
ance to a variety of toxic compounds and are suggested 

as common characteristic for a diversified plant micro-
biome [19], playing e.g. a role in bacterial colonization 
and persistence within the host [66]. Resistance features 
against quinolone, polymyxin and mupirocin were shared 
by all apples as well and were annotated to MAGs and 
extracted plasmids. Quinolone and multidrug resist-
ance genes were, however, more abundant and diverse 
in stored apples. In a recent study, resistomes of unre-
stricted buildings and controlled built environments were 
compared, revealing quinolone and multidrug resistance 
genes to increase with higher levels of confinement [67]. 
Translating this to agriculture, the postharvest period 
represents, compared to the field, highly microbial-con-
trolled conditions, which might select for the specific 
resistant genes.

Our resistome analysis covered also the annotation 
of ARGs to plasmids, thus, the potential of being trans-
mitted via horizontal gene transfer. Among them, four 
(sul1, ileS1, uppP and bacA) should be highlighted due 
to growing environmental and clinical concerns. Plas-
mid-borne sul1 confers resistance towards sulfonamide 
and synthetic trimethoprim and was detected in fresh 
and stored apples. Especially in the developing world, 
the combined usage of trimethoprim/sulfamethoxazole 
is commonly prescribed as first-line treatment against 

Fig. 6  Alignment of cultivation-dependent and genome-annotated resistance profiles of apple isolates. Isolates are clustered and resolved 
to highest taxonomic levels based on ANI calculation. Colored fields indicate growth of isolates on antibiotic-supplemented agar plates 
(Amp = ampicillin, Chl = chloramophenicol, Ery = erythromycin, Gen = gentamycin, Pen = penicillin G, Rif = rifampicin, Tet = tetracycline, 
Van = vancomycin). Green fields mark the corresponding annotation of a potential determinant detected in the sequenced genome (multi resistant 
genes: ARG ID added in the second last column; target specific ARGs: ARG ID added to respective field). Shaded fields mark resistance profiles which 
were not confirmed by ARG annotation of genomes. ARG IDs of scaffolds identified as target specific towards antibiotics that were not included in 
antibiotic susceptibility tests are listed in the last column
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respiratory and urinary tract infections [68], although 
rapid spread of resistance among major clinical patho-
gens is being reported [69–71]. Sul1 is globally distrib-
uted and possess highest environmental fitness, i.e. 
long-lasting persistence and the ability to proliferate, and 
is therefore already suggested as indicator gene to assess 
the antibiotic resistance status of environmental habitats 
[72]. River sites with strong impact of urban and agricul-
tural activity were reported to correlate with increased 
trimethoprim/sulfamethoxazole resistance [73]; large-
scale intensive agriculture might, thus, correlate also to 
presence and distribution of Sul1 in apple. The mupi-
rocin resistance gene ileS1 was annotated to plasmids of 
stored/transported apples of both cultivars. Mupirocin, a 
natural antibiotic produced by P. fluorescens [74], is typi-
cally used to prevent colonization of methicillin-resist-
ant Staphylococcus aureus (MRSA) which can establish 
critical high-level resistance by carrying ileS1 [75, 76]. 
However, for both genes, sul1 and ileS1, no association 
to MAGs or taxonomic assignment to clinically relevant 
bacteria and related strains was possible. In contrast, 
plasmid-borne bacitracin resistance genes uppP and 
bacA, were annotated to MAGs of Alphaproteobacte-
ria and Ochrobactrum, respectively. Bacitracin is widely 
used in human and veterinary medicine and as animal 
growth promoter, thus, affecting distinct environments 
[77]. Across a large-scale metagenomic survey of envi-
ronmental samples, bacitracin resistance was among the 
main mechanisms detected in river water and soil [65]. 
For apples, irrigation systems using river water might be 
a transmission route for bacitracin resistance, with Alp-
haproteobacteria and Ochrobactrum, both general mem-
bers of soil and rhizosphere communities, representing 
the vectors.

We isolated bacteria and subjecting them to antibiotic 
susceptibility tests and confirmed the functional resist-
ance of the apple microbiota against several antibiotics at 
the applied concentrations. The majority of the resistance 
profiles were determined on a genetic level as well; how-
ever, around one third of observed resistance patterns 
remains uncertain. This suggests several unknown resist-
ance determinants and gaps in ARG databases, especially 
for bacterial groups other than Gammaproteobacteria. In 
addition, major resistance profiles observed for isolates 
(vancomycin, ampicillin and penicillin G) do not entirely 
correspond to the abundant AMRs assigned to metage-
nomes. Considering that isolation followed by WGS is 
state-of-the-art in food safety analyses, our results point 
out the necessity of combining multi-omics technologies 
and cultivation assays to obtain a more complete picture 
of resistomes in a given environment.

Resistance genes can be, in principle, acquired from 
any source [16], and the apple resistome might be shaped 

by different aspects. In the field, contamination can occur 
through irrigation water, organic fertilizers, wild animals, 
and soil; especially antibiotic usage in animal husbandry 
or waste water treatment plants is described to co-select 
for mobile genetic elements that carry multiple resistant 
genes [72]. The postharvest period, however, represents 
a critical component which is still less understood. First, 
handling: apple cultivation and harvest is largely based on 
manual labor, and in Austrian supermarkets, apples were 
presented open-layered, assuming further handling. Sec-
ond, storage time: during storage, host-associated bacte-
ria may evolve towards antibiotic resistance as a natural 
response to changes of both the host´s physiology, e.g. 
ripening processes and altering metabolic conditions due 
to changes in the environment i.e. cold storage facilities, 
containers and refrigerated road transport as well as the 
metacommunity, including fungi. And third, the vari-
ety of postharvest treatments, which mainly target the 
reduction of microbial loads and diversity [12]. All the 
mentioned factors, as well as the potential introduction 
of microbiota from non-agricultural sources, may exert 
selective pressure which can lead to changes in the com-
munity composition and in the intrinsic resistome. Those 
factors might also result in pleiotropic effects towards 
distinct traits, including also the coincidental evolu-
tion of resistance, even in absence of antibiotics [78]. In 
return, selective pressure that favors resistance evolu-
tion may also alter the composition of the microbiome 
postharvest. Further studies, monitoring physiochemical 
parameters throughout the entire processing and trans-
port line, will help to understand the stages that are criti-
cal for resistance development in apple microbiomes.

Overall, all fresh and stored apples investigated, 
revealed a diverse and abundant resistome. Thereby, our 
study is strengthening the argument that all plant micro-
biomes harbor intrinsic resistance, as observed under 
highly heterogeneous trials [18, 19]. Exemplary compari-
son to recent studies on the Sphagnum moss resistome 
from an undomesticated bog ecosystem [19], and the 
resistome of leafy-green Eruca sativa [17] reveals the 
apples to contain less associated ARGs and a lower num-
ber of resistant isolates. Furthermore, antibiotics are nat-
ural products of bacterial secondary metabolism; equally, 
resistance to antibiotics is a natural and ancient microbial 
feature, and thus present even in pristine environments 
that pre-date the anthropogenic influence on resistance 
dissemination [79, 80]. Finally, the resistome genotype 
must be distinguished from the resistance phenotype, 
meaning that the presence of a specific ARG does not 
encode resistance, inevitably [81]; moreover, some of the 
genes catalogued as resistant genes in the deepARG data-
base can also be regulators or genes that confer resistance 
upon their mutation. In view of these facts, the apple 
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resistome does not necessarily call for high alert; how-
ever, the observed differences and the potential role of 
complex food systems and the postharvest period on fruit 
resistomes should no longer be disregarded. Supported 
by previous studies on the postharvest apple microbiome 
[24–26], members of the order Enterobacteriales, such as 
Pantoea and Rahnella, as well as the ARGs detected spe-
cifically in stored apples, should be considered as indica-
tors for reduced fruit and vegetable freshness.

Conclusion
Overall, the apple microbiome harbors a diverse and ver-
satile resistome. While this is a regular feature of plant-
associated communities in general, the current excessive 
usage of chemicals and antibiotics in agricultural and 
clinical settings can provoke a shift within produce 
resistomes. Especially plasmid-encoded ARGs, which 
were detected in all apple samples, could have an impact. 
In agreement with the recent suggestion of coordinated 
global health actions to combat world-wide transmission 
of AMR [9], we suggest the global distribution as well as 
complex food systems including transport of produce 
to be considered as a potential risk parameter. We also 
encourage additional studies which will help to identify 
resistance genes and microbial carriers of risk for target-
oriented monitoring in food safety standards.
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