Breed, age, coat colour, month and temperature humidity index (THI) influence on body weight (W), body condition score (BCS), thermophysiological variables (rectal temperature (Tr), skin temperature (Tsk)) and hair length was studied in Nguni (n = 19) and Boran (n = 16). As a result of this study, breed influenced W, BCS and Tsk on the neck and belly (P < 0.05). The BCS and W of Nguni cows were higher than the Boran cows. Hair length of both breeds increased from February to August. The THI influenced thermophysiological variables (P < 0.05). Increased Tr for both breeds was recorded in February and April, respectively (P < 0.05). Month influenced Tsk and June recorded lower values (P < 0.05). Younger cows (3–8 years) had lower weight and high Tr and Tsk (P < 0.05). Nguni cows had high neck and thurl temperatures in June while Boran cows had the highest in August (P < 0.05). Red, dun and white-black Boran cows had increased BCS. Nguni cows with red, fawn and white cows had high BCS. Fawn-coloured Nguni cows and white-brown Boran cows had the more weight than cows with other colours compared in the study. White-red Nguni and Boran cows recorded the highest Tr. For Nguni cows, neck and belly temperatures were significantly (P < 0.001) correlated to thurl temperature. Boran cows had significant (P < 0.001) correlations for THI and neck, belly and thurl temperatures. The current study found that Nguni cows were more adapted to the prevailing bioclimatic changes. However, Boran cows have the potential of performing well under heat stress conditions over time.
Food insecurity is an intractable problem in South Africa. The country has a tradition of evidence-based decision making, grounded in the findings of national surveys. However, the rich insights from sub-national surveys remain a largely untapped resource for understandings of the contextual experience of food insecurity. A web-based search identified 169 sub-national food insecurity studies conducted in the post-apartheid period between 1994 and 2014. The systematic review found that the studies used 27 different measures of food insecurity, confounding the comparative analysis of food insecurity at this level. While social grants have brought a measure of poverty relief at household level, unaffordable diets were the root cause of food insecurity. The increasing consumption of cheaper, more available and preferred ‘globalised’ foods with high energy content and low nutritional value lead to overweight and obesity alongside child stunting. Unless a comparable set of indicators is used in such surveys, they are not able to provide comparable information on the scope and scale of the problem. Policy makers should be engaging with researchers to learn from these studies, while researchers need to share this wealth of sub-national study findings with government to strengthen food security planning, monitoring, and evaluation at all levels.
Growing urbanisation in South Africa is reflected in burgeoning Working class and informal township settlements on the fringes of its major towns and cities. Paired with this is an increasing reliance on cash as the primary means of economic transaction, which has in turn stimulated the growth of micro-enterprise business activities within the township context. This article discusses the findings of an eight-township small-area census which occurred between 2010 and 2013 in Cape Town, Johannesburg, Ekurhuleni and Durban townships representing 250 000 residents. The researchers were able to establish the scope and scale of informal food and drink retailing in these localities. Of the 10 049 micro-enterprises located in the study, some 3966 (or 39% of the total) trade in food. These include enterprises in primary production, fresh produce retailing, grocery retailing from house and spaza shops, and informal foodservice enterprises. Food is the basis for much township informal business and plays an important role in making food increasingly affordable and locally accessible, and in creating cash employment. The article builds on the knowledge base of the township informal economy role in bolstering food security needs for the marginalised.
Increased biosynthesis of abscisic acid (ABA) occurs in plants in response to water deficit, which is mediated by changes in the levels of reactive oxygen species such as H2O2. Water deficit and ABA induce expression of some RD22-like proteins. This study aimed to evaluate the effect of water deficit and exogenous ABA (50 µM ABA applied every 24 hours for a total of 72 hours) on H2O2 content in Zea mays (maize) and to characterise genes encoding two putative maize RD22-like proteins (designated ZmRD22A and ZmRD22B). The expression profiles of the two putative maize RD22-like genes in response to water deficit and treatment with ABA were examined in leaves. In silico analyses showed that the maize RD22-like proteins share domain organisation with previously characterized RD22-like proteins. Both water deficit and exogenous ABA resulted in increased H2O2 content in leaves but the increase was more pronounced in response to water deficit than to exogenous ABA. Lignin content was not affected by exogenous ABA, whereas it was decreased by water deficit. Expression of both RD22-like genes was up-regulated by drought but the ZmRD22A gene was not influenced by exogenous ABA, whereas ZmRD22B was highly responsive to exogenous ABA.
Peaches are popular, nutritious and widely consumed. Being a tree crop, it is considered a low risk fruit, with no direct water contact, and no previous foodborne disease outbreaks associated with its consumption. However, in 2014 the pioneer association between stone fruit and a foodborne illness was reported, linking Listeria monocytogenes to stone fruit. This highlights the need for better understanding of risk associated with contaminated fresh stone fruit, in order to implement adequate preventative measures. No information is available on the presence of foodborne pathogens on peaches in the supply chain. A case study approach was therefore followed to assess foodborne pathogen presence on the farm, focusing on the impact of irrigation water, facility sanitation and hygiene by collecting various fruit and environmental samples (n = 428). This study demonstrates the effectiveness of integrating basic microbial testing with safety management and risk assessment tools that can be collectively used to improve the food safety management system. No Salmonella Typhimurium was detected from samples, however, Escherichia coli O157:H7, Listeria spp. and Staphylococcus aureus were detected on fruit and environmental samples. Despite the GlobalG.A.P. certification status of the farm, livestock frequented water sources which lead to E. coli O157:H7 contamination. This conclusion was based on positive detection of foodborne pathogens from the water sources and subsequent removal of livestock which resulted in a definite decrease in pathogen detection. A number of E. coli O157:H7 and S. aureus were detected during the second year of monitoring from environmental samples and it was observed that the personal hygiene and facility sanitation was not adequately enforced. Based on feedback given to the farmer, enforcement was improved and a definite decrease in foodborne pathogens was observed in the following sampling cycle. Areas of risk that were still identified following the fourth year of monitoring included the water source used for irrigation and poor sanitation in the production and processing facilities. Limited foodborne pathogen prevalence on peaches over the full study period as well as the extended export supply chain at controlled temperatures resulted in low-to-medium calculated consumer risk. The correct and meticulous implementation of integrated and holistic pre- and post-harvest food safety management systems is therefore essential to prevent produce contamination, reduce the consumer risk and therefore ensure overall product safety.
This study investigated the effect of acid (pH 4.2), osmotic (10% NaCl) and heat (55 °C for 30 min) stress induced injury on Listeria monocytogenes strains ATCC19115, 69, 159/10 and 243 using differential plating and flow cytometry coupled with membrane integrity indicators, thiazole orange (TO) and propidium iodide (PI) staining. Growth kinetics of injured cells sorted by fluorescence activated cell sorting (FACS) were studied at 4, 25 and 37 °C. The percentage of cell injury detectable by both flow cytometry and differential plating varied significantly among strains and stress treatments (p < 0.0001). Based on flow cytometry and TO/PI staining, acid stress caused the highest level of injury followed by heat and osmotic stress. Following cell sorting, acid and osmotic stress injured cells were capable of resuscitation and re-growth while heat injured cells (except for strain 69) were incapable of re-growth despite having a high level of membrane intact cells. The lag phase duration (λ) of sorted stress injured cells resuscitated in brain heart infusion (BHI) broth was significantly influenced by strain variations (p < 0.0001), stress treatments (p = 0.007) and temperature of resuscitation (p ≤ 0.001). Following repair, the maximum specific growth rate (μmax) of resuscitated cells was not different from untreated control cells regardless of strain differences and stress treatments. Only temperature had a significant effect (p < 0.0001) on growth rate. Sorted cells were also capable of growth at 4 °C, with the time to detectable growth (≥ 1.40 Log10 CFU ml− 1) ranging from 3 to 15 days. Overall, re-growth potential of sorted cells showed that while membrane integrity was a good indicator of cell injury and viability loss for acid and osmotic stress, it was not a sufficient indicator of heat stress injury. Once injured cells repair the cellular damage, their growth rate is not different from non-injured cells regardless of form of stress and strain differences. Thus highlighting the potential food safety risks of stress injured L. monocytogenes cells.
The objective of the study was to characterise genetic parameters across months for different tick species and anatomical locations in South African Nguni cattle. Tick counts were conducted monthly, over a 2-year period, on 586 Nguni cattle under natural infestation, from four herds located in different provinces of South Africa. The counts were recorded for six species of ticks (Amblyomma hebraeum, Rhipicephalus evertsi evertsi, Rhipicephalus decoleratus and microplus (Boofilids), Rhipicephalus appendiculatus, Rhipicephalus simus and Hyalomma marginatum) attached on eight anatomical locations on the animals and were summed by species and anatomical location. Heritability estimates, phenotypic and genetic correlations were estimated on a monthly basis using mixed linear models, fitting univariate and bivariate sire models. Fixed effects considered were location, sex, year and age as a covariate. Tick counts were higher in the hot months, and A. hebraeum was the most dominant tick species. Heritability estimates for tick count varied by month and trait and ranged from 0 to 0.89. Genetic correlations were mostly positive, and low to high, with some negative correlations with high standard error. Phenotypic correlations were low to moderate. In general, high genetic correlations were observed between whole body count and the anatomical location counts, suggesting that it may not be necessary to conduct whole body counts. Counts from the belly and perineum appeared to be the most suitable surrogate traits for whole body count. These findings provide useful information for developing strategies for the practical implementation of genetic selection, as a supplement to the traditional tick control measures.
Iron, zinc and vitamin A deficiencies are serious public health problems in sub-Saharan Africa, which can be alleviated by dietary diversification. The effects of adding cowpea leaf (CL) and orange-fleshed sweet potato (OFSP) relishes to sorghum and maize porridges on iron, zinc and β-carotene contents and bioaccessibilities were determined. Despite the high iron content of the CL relish (14.59 mg/100 g), the vegetable relishes had little effect on the iron bioaccessibility from the cereal porridges. Importantly, the addition of the CL relish increased the percentage and amount of bioaccessible zinc 2- and 3-fold, respectively. Addition of CL and OFSP relishes resulted in β-carotene contents of 10–13 mg/100 g. The β-carotene from the OFSP relish meals was double as bioaccessible than that from the CL relish meals. Addition of the vegetable relishes has real potential to improve especially the vitamin A and zinc nutritive value of cereal diets.
The objective of this study was to determine the changes in biochemical indicators for nutritional stress from a herd of Boran and Nguni cows. A total of 40 cows (20 from each herd) were randomly selected for the study. The animals were identified according to their parities as follows: parity 1 (n = 8), parity 2 (n = 16), parity 3 (n = 8) and parity 4 (n = 8). Serum chemistry levels of glucose, total cholesterol, urea, creatinine, albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutylaminotransferase (GGT), leukocytes, erythrocytes, haemoglobin, packed cell volume (PCV) and platelet counts were determined for 12 consecutive months spanning across the wet and dry seasons. The Boran cows had different creatinine concentration levels at different parities. The Boran cows in parity 1 had the highest (P < 0.05) concentration of creatinine 87.2 ± 5.17 μmol/L than other cows in different parities within the herd. There were significant differences in enzymes such as AST, ALP and ALT among the herd and parities. Boran cows in parity 3 had the lowest (P < 0.05) AST concentration levels of 52.6 ± 3.48 U/L, Nguni cows in parity 4 had the highest concentration of ALP of 161.3 ± 8.10 U/L while Nguni cows in parity 1 had the highest concentration level of ALT 55.1 ± 1.56 U/L than all the cows within the same herd. The Nguni herd had significantly higher (P < 0.05) levels of creatinine in both the wet (97.8 ± 3.27 μmol/L) and dry seasons (108.7 ± 3.29 μmol/L) compared with the Boran herd. Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with cows from the Boran herd. Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with those from the Boran herd.
The effect of oven and forced convection continuous tumble (FCCT) roasting on the microstructure of whole maize kernels was characterised and quantified using X-ray micro-computed tomography (μCT). The three-dimensional (3-D) volumes, reconstructed from the two-dimensional (2-D) images, were segmented into regions of interests (ROIs), i.e. air, germ, floury and vitreous endosperm, and each region quantified. Oven roasting was associated with a larger increase in total kernel volume (10.8%) than FCCT roasting (3.4%) as well as a significant (P ≤ 0.05) decrease in whole kernel relative density (oven = 6.3%; FCCT = 1.9%). FCCT roasting had almost no effect on material density, in contrast to a significant (P ≤ 0.05) decrease of 5.0% during oven roasting. Subsequent validation of the dry milling properties, i.e. percentage hominy chop, milling yield and hectolitre mass (HLM), indicated no significantly (P > 0.05) detrimental effect by either of the roasting methods.
Roasting of maize can improve sensory, shelf life, nutritional and antioxidant properties with subsequent use in ready-to-eat foods and breakfast cereals. Roasting will inevitably affect the structure of maize, which in turn will affect the quality of the end product. This prompted the demand for non-destructive techniques that directly measure microstructural properties of food in order to link structure with quality. X-ray μCT in combination with image analysis uniquely illustrated the microstructural changes occurring during conventional oven and innovative FCCT roasting respectively. Furthermore, dry milling properties are important indicators of quality characteristics for the dry milling industry. The method described in this article can be applied to any food material to investigate structural properties.